首页 / 院系成果 / 成果详情页

Hypoxic preconditioning promotes the translocation of protein kinase C epsilon binding with caveolin-3 at cell membrane not mitochondrial in rat heart  期刊论文  

  • 编号:
    bda0e404-1ec8-4602-86ab-720dc3c67c70
  • 作者:
  • 语种:
    英文
  • 期刊:
    CELL CYCLE ISSN:1538-4101 2015 年 14 卷 22 期 (3557 - 3565) ; NOV 17
  • 收录:
  • 关键词:
  • 摘要:

    Protein kinase C has been shown to play a central role in the cardioprotection of ischemic preconditioning. However, the mechanism underlying PKC-mediated cardioprotection is not completely understood. Given that caveolae are critical for PKC signaling, we sought to determine whether hypoxic preconditioning promotes translocation and association of PKC isoforms with caveolin-3. A cellular model of hypoxic preconditioning from adult rat cardiac myocytes (ARCM) or H9c2 cells was employed to examine PKC isoforms by molecular, biochemical and cellular imaging analysis. Hypoxia was induced by incubating the cells in an airtight chamber in which O-2 was replaced by N-2 with glucose-free Tyrode's solution. Cells were subjected to hypoxic preconditioning with 10 minutes of hypoxia followed by 30 minutes of reoxygenation. Western blot data indicated that the band intensity for PKC epsilon, PKC or PKC, but not PKC and PKC was enhanced significantly by hypoxic preconditioning from the caveolin-enriched plasma membrane interactions. Immunoprecipitation experiments from the caveolin-enriched membrane fractions of ARCM showed that the level of PKC epsilon, PKC and PKC in the anti-caveolin-3 immunoprecipitates was also increased by hypoxic preconditioning. Further, our FRET analysis in H9c2 cells suggested that there is a minimum FRET signal for caveolin-3 and PKC epsilon along cell peripherals, but hypoxic preconditioning enhanced the FRET signal, indicating a potential interaction between caveolin-3 and PKC epsilon. And also treatment of the cells with hypoxic preconditioning led to a smaller amount of translocation of PKC epsilon to the mitochondria than that to the membrane. We demonstrate that hypoxic preconditioning promotes rapid association of PKC epsilon, PKC and PKC with the caveolin-enriched plasma membrane microdomain of cardiac myocytes, and PKC epsilon via direct molecular interaction with caveolin-3. This regulatory mechanism may play an important role in cardioprotection.

  • 推荐引用方式
    GB/T 7714:
    Yu Hongmei,Yang Zhaogang,Pan Su, et al. Hypoxic preconditioning promotes the translocation of protein kinase C epsilon binding with caveolin-3 at cell membrane not mitochondrial in rat heart [J].CELL CYCLE,2015,14(22):3557-3565.
  • APA:
    Yu Hongmei,Yang Zhaogang,Pan Su,Yang Yudan,&Sun Wei.(2015).Hypoxic preconditioning promotes the translocation of protein kinase C epsilon binding with caveolin-3 at cell membrane not mitochondrial in rat heart .CELL CYCLE,14(22):3557-3565.
  • MLA:
    Yu Hongmei, et al. "Hypoxic preconditioning promotes the translocation of protein kinase C epsilon binding with caveolin-3 at cell membrane not mitochondrial in rat heart" .CELL CYCLE 14,22(2015):3557-3565.
  • 条目包含文件:
    文件类型:PDF,文件大小:
    正在加载全文
浏览次数:18 下载次数:0
浏览次数:18
下载次数:0
打印次数:0
浏览器支持: Google Chrome   火狐   360浏览器极速模式(8.0+极速模式) 
返回顶部