首页 / 院系成果 / 成果详情页

Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration  期刊论文  

  • 编号:
    c3afc1b3-8768-42b3-b7bd-8dc95fb1b1c2
  • 作者:
    Zhang, Bing#[1]Zhang, Peibiao[2];Wang, Zongliang[2];Lyu, Zhongwen[3];Wu, Han(武汉)*[4]
  • 语种:
    英文
  • 期刊:
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B ISSN:1673-1581 2017 年 18 卷 11 期 (963 - 976) ; NOV
  • 收录:
  • 关键词:
  • 摘要:

    A new therapeutic strategy using nanocomposite scaffolds of grafted hydroxyapatite (g-HA)/poly(lactide-co-glycolide) (PLGA) carried with autologous mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) was assessed for the therapy of critical bone defects. At the same time, tissue response and in vivo mineralization of tissue-engineered implants were investigated.
    A composite scaffold of PLGA and g-HA was fabricated by the solvent casting and particulate-leaching method. The tissue-engineered implants were prepared by seeding the scaffolds with autologous bone marrow MSCs in vitro. Then, mineralization and osteogenesis were observed by intramuscular implantation, as well as the repair of the critical radius defects in rabbits.
    After eight weeks post-surgery, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that g-HA/PLGA had a better interface of tissue response and higher mineralization than PLGA. Apatite particles were formed and varied both in macropores and micropores of g-HA/PLGA. Computer radiographs and histological analysis revealed that there were more and more quickly formed new bone formations and better fusion in the bone defect areas of g-HA/PLGA at 2-8 weeks post-surgery. Typical bone synostosis between the implant and bone tissue was found in g-HA/PLGA, while only fibrous tissues formed in PLGA.
    The incorporation of g-HA mainly improved mineralization and bone formation compared with PLGA. The application of MSCs can enhance bone formation and mineralization in PLGA scaffolds compared with cell-free scaffolds. Furthermore, it can accelerate the absorption of scaffolds compared with composite scaffolds.

  • 推荐引用方式
    GB/T 7714:
    Zhang Bing,Zhang Pei-biao,Wang Zong-liang, et al. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration [J].JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B,2017,18(11):963-976.
  • APA:
    Zhang Bing,Zhang Pei-biao,Wang Zong-liang,Lyu Zhong-wen,&Wu Han.(2017).Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration .JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B,18(11):963-976.
  • MLA:
    Zhang Bing, et al. "Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration" .JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B 18,11(2017):963-976.
  • 条目包含文件:
    文件类型:PDF,文件大小:
    正在加载全文
浏览次数:37 下载次数:0
浏览次数:37
下载次数:0
打印次数:0
浏览器支持: Google Chrome   火狐   360浏览器极速模式(8.0+极速模式) 
返回顶部